UNIDAD IV. VARIACIÓN DE FUNCIONES

4.3. Máximos y mínimos relativos y absolutos, criterio de la primera derivada, concavidad y puntos de inflexión

Máximos y mínimos relativos y absolutos

Una función f tiene un <u>máximo relativo</u> en el punto a si f(a) es mayor o igual que los puntos próximos al punto a.

Una función f tiene un <u>mínimo relativo</u> en el punto a si f(a) es menor o igual que los puntos próximos al punto b.

Una función tiene su $\underline{\text{máximo absoluto}}$ en el x = a si la ordenada (valor de la función en el eje Y) es mayor o igual que en cualquier otro punto del dominio de la función.

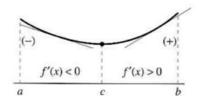
Una función tiene su <u>mínimo absoluto</u> en el x=a si la ordenada es menor o igual que en cualquier otro punto del dominio de la función

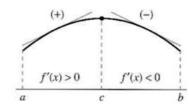
Recordamos ahora el criterio de la primera derivada visto en el tema anterior.

TEOREMA 3.6 Criterio de la primera derivada

Sea c un punto crítico de una función f que es continua en un intervalo abierto I que contiene a c. Si f es derivable en el intervalo, excepto posiblemente en c, entonces f(c) puede clasificarse como sigue.

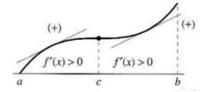
- 1. Si f'(x) cambia de negativa a positiva en c, entonces f tiene un minimo relativo en (c, f(c)).
- Si f'(x) cambia de positiva a negativa en c, entonces f tiene un máximo relativo en (c, f(c)).
- Si f'(x) es positiva en ambos lados de c o negativa en ambos lados de c, entonces f(c) no es ni un mínimo relativo ni un máximo relativo.

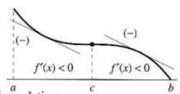




Mínimo relativo

Máximo relativo



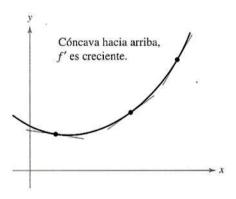


Ni mínimo relativo ni máximo relativo

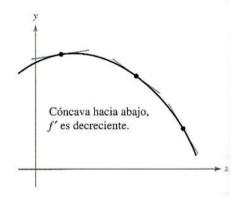
Definición de concavidad

Sea f derivable en un intervalo abierto I. La gráfica de f es **cóncava hacia arriba** sobre I si f' es creciente en el intervalo y **cóncava hacia abajo** en I si f' es decreciente en el intervalo.

- Sea f derivable sobre un intervalo abierto I. Si la gráfica de f es cóncava hacia arriba en I, entonces la gráfica de f yace sobre todas sus rectas tangentes en I. [Ver la figura 3.24a.]
- 2. Sea f derivable en un intervalo abierto I. Si la gráfica de f es cóncava hacia abajo en I, entonces la gráfica de f yace debajo de todas sus rectas tangentes en I. [Ver la figura 3.24b.]



a) La gráfica de f se encuentra sobre sus rectas tangentes



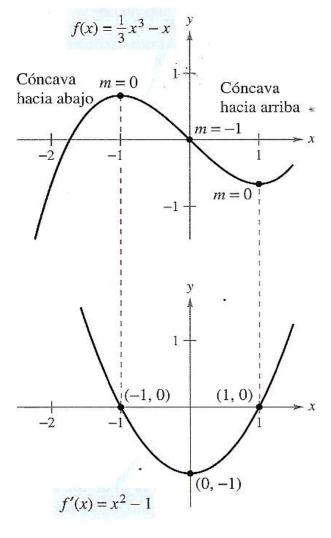
b) La gráfica de f se encuentra debajo de sus rectas tangentes

Figura 3.24

Para determinar los intervalos abiertos sobre los cuales la gráfica de una función f es cóncava hacia arriba o hacia abajo, se necesita determinar los intervalos sobre los cuales f' sea creciente o decreciente. Por ejemplo, la gráfica de

$$f(x) = \frac{1}{3}x^3 - x$$

es cóncava hacia abajo en el intervalo abierto $(-\infty, 0)$ debido a que $f'(x) = x^2 - 1$ es ahí decreciente. (Ver la figura 3.25.) De manera similar, la gráfica de f es cóncava hacia arriba en el intervalo $(0, \infty)$ debido a que f' es creciente en $(0, \infty)$.



f' es decreciente.

f' es creciente.

La concavidad de f se relaciona con la pendiente de la derivada

Figura 3.25

TEOREMA 3.7 Criterio de concavidad

Sea f una función cuya segunda derivada existe en un intervalo abierto I.

- 1. Si f''(x) > 0 para todo x en I, entonces la gráfica de f es cóncava hacia arriba en I.
- 2. Si f''(x) < 0 para todo x en I, entonces la gráfica de f es cóncava hacia abajo en I.

EJEMPLO I Determinación de la concavidad

Determinar los intervalos abiertos en los cuales la gráfica de

$$f(x) = \frac{6}{x^2 + 3}$$

es cóncava hacia arriba o hacia abajo.

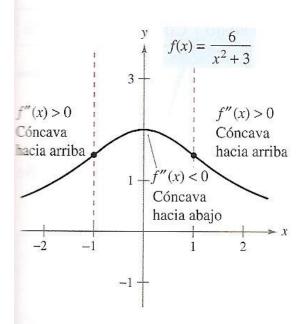
Solución Se empieza observando que f es continua en toda la recta real. A continuación, se encuentra la segunda derivada de f.

$$f(x) = 6(x^2 + 3)^{-1}$$
Reescribir la función original.
$$f'(x) = (-6)(x^2 + 3)^{-2}(2x)$$
Derivar.
$$= \frac{-12x}{(x^2 + 3)^2}$$
Primera derivada.
$$f''(x) = \frac{(x^2 + 3)^2(-12) - (-12x)(2)(x^2 + 3)(2x)}{(x^2 + 3)^4}$$
Derivar.
$$= \frac{36(x^2 - 1)}{(x^2 + 3)^3}$$
Segunda derivada.

Como f''(x) = 0 cuando $x = \pm 1$ y f'' se define en toda la recta real, se debe probar f'' en los intervalos $(-\infty, -1)$, (-1, 1) y $(1, \infty)$. Los resultados se muestran en la tabla y en la figura 3.26.

Intervalo	$-\infty < x < -1$	-1 < x < 1	$1 < x < \infty$
Valor de prueba	x = -2	x = 0	x = 2
Signo de $f''(x)$	f''(-2) > 0	f''(0) < 0	f''(2) > 0
Conclusión	Cóncava hacia arriba	Cóncava hacia abajo	Cóncava hacia arriba

NOTA Un tercer caso del teorema 3.7 podría ser que si f''(x) = 0 para todo x en I, entonces f es lineal. Notar, sin embargo, que la concavidad no se define para una recta. En otras palabras una recta no es ni cóncava hacia arriba ni cóncava hacia abajo.



A partir del signo de f" se puede determinar la concavidad de la gráfica de f Figura 3.26

EJEMPLO 2 Determinación de la concavidad

Determinar los intervalos abiertos sobre los cuales la gráfica de $f(x) = \frac{x^2 + 1}{x^2 - 4}$ es cóncava hacia arriba o hacia abajo.

Solución Al derivar dos veces se obtiene lo siguiente

$$f(x) = \frac{x^2 + 1}{x^2 - 4}$$
 Escribir la función original.

$$f'(x) = \frac{(x^2 - 4)(2x) - (x^2 + 1)(2x)}{(x^2 - 4)^2}$$
 Derivar.

$$= \frac{-10x}{(x^2 - 4)^2}$$
 Primera derivada.

$$f''(x) = \frac{(x^2 - 4)^2(-10) - (-10x)(2)(x^2 - 4)(2x)}{(x^2 - 4)^4}$$
 Derivar.

$$= \frac{10(3x^2 + 4)}{(x^2 - 4)^3}$$
 Segunda derivada.

No hay puntos en los cuales f''(x) = 0, pero en $x = \pm 2$ la función f no es continua, por lo que se prueba la concavidad en los intervalos $(-\infty, -2)$, (-2, 2) y $(2, \infty)$, como se ilustra en la tabla. La gráfica de f se muestra en la figura 3.27.

Intervalo	$-\infty < x < -2$	-2 < x < 2	$2 < x < \infty$
Valor de prueba	x = -3	x = 0	x = 3
Signo de $f''(x)$	f''(-3) > 0	f''(0) < 0	f''(3) > 0
Conclusión	Cóncava hacia arriba	Cóncava hacia abajo	Cóncava hacia arriba

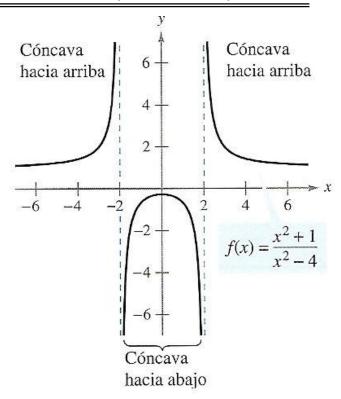


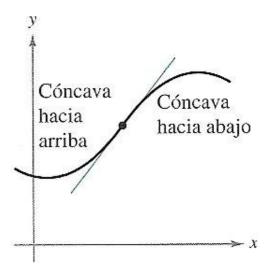
Figura 3.27

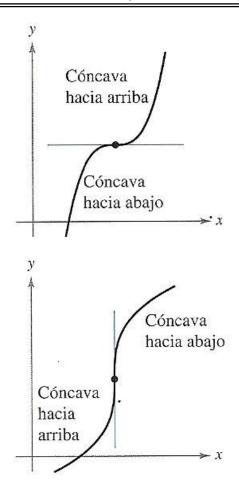
Puntos de inflexión

La gráfica en la figura 3.26 tiene dos puntos en los cuales cambia la concavidad. Si la recta tangente a la gráfica existe en un punto de este tipo, ese punto es un **punto de inflexión**. Se muestran tres tipos de puntos de inflexión en la figura 3.28.

Definición de punto de inflexión

Sea f una función que es continua en un intervalo abierto y sea c un punto en ese intervalo. Si la gráfica de f tiene una recta tangente en este punto (c, f(c)), entonces este punto es un **punto de inflexión** de la gráfica de f si la concavidad de f cambia de cóncava hacia arriba a cóncava hacia abajo (o de cóncava hacia abajo a cóncava hacia arriba) en ese punto.





La concavidad de f cambia en un punto de inflexión. Notar que la gráfica cruza su recta tangente en un punto de inflexión **Figura 3.28**

TEOREMA 3.8 Punto de inflexión

Si (c, f(c)) es un punto de inflexión de la gráfica de f, entonces f''(c) = 0 o f'' no existe en x = c.

EJEMPLO 3 Determinación de los puntos de inflexión

Determinar los puntos de inflexión y analizar la concavidad de la gráfica de $f(x) = x^4 - 4x^3$.

Solución La derivación doble produce lo siguiente.

$$f(x) = x^4 - 4x^3$$

Escribir la función original.

$$f'(x) = 4x^3 - 12x^2$$

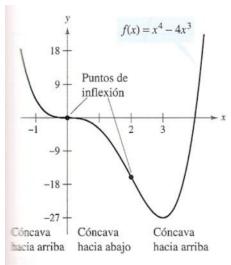
Encontrar la primera derivada.

$$f''(x) = 12x^2 - 24x = 12x(x - 2)$$

Encontrar la segunda derivada.

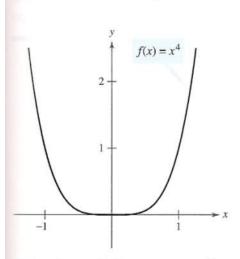
Haciendo f''(x) = 0 es posible determinar que los puntos de inflexión posibles ocurren en x = 0 y x = 2. Al probar los intervalos determinados por estos valores de x, se puede concluir que ambos producen puntos de inflexión. Un resumen de esta prueba se presenta en la tabla, y la gráfica de f se ilustra en la figura 3.29.

Intervalo	$-\infty < x < 0$	0 < x < 2	$2 < x < \infty$
Valor de prueba	x = -1	x = 1	x = 3
Signo de $f''(x)$	f''(-1) > 0	f''(1) < 0	f''(3) > 0
Conclusión	Cóncava hacia arriba	Cóncava hacia abajo	Cóncava hacia arriba



Pueden ocurrir puntos de inflexión donde f''(x) = 0 o f''' no existe

Figura 3.29



f''(0) = 0, pero (0, 0) no es un punto de inflexión

Figura 3.30

Criterio de la segunda derivada

Además de un método para analizar la concavidad, es posible utilizar la segunda derivada para efectuar una prueba simple correspondiente a los máximos y mínimos relativos. Se basa en el hecho de que si la gráfica de una función f es cóncava hacia arriba en un intervalo abierto que contiene a c, y f'(c) = 0, f(c) debe ser un mínimo relativo de f. De manera similar, si la gráfica de una función es cóncava hacia abajo en un intervalo abierto que contiene a c, y f'(c) = 0, f(c) debe ser un máximo relativo de f (ver la figura 3.31).

TEOREMA 3.9 Criterio de la segunda derivada

Sea f una función tal que f'(c)=0 y la segunda derivada de f existe en un intervalo abierto que contiene a c.

- 1. Si f''(c) > 0, entonces f tiene un mínimo relativo en (c, f(c)).
- 2. Si f''(c) < 0, entonces f tiene un máximo relativo en (c, f(c)).

Si f''(c) = 0, entonces el criterio falla. Esto es, f quizá tenga un máximo relativo en c, un mínimo relativo en (c, f(c)) o ninguno de los dos. En tales casos, se puede utilizar el criterio de la primera derivada.

EJEMPLO 4 Empleo del critero de la segunda derivada

Encontrar los extremos relativos correspondientes a $f(x) = -3x^5 + 5x^3$.

Solución Empezando con la determinación de los puntos críticos de f.

$$f'(x) = -15x^4 + 15x^2 = 15x^2(1 - x^2) = 0$$

 $x = -1, 0, 1$

Igualar f'(x) a cero.

Puntos críticos.

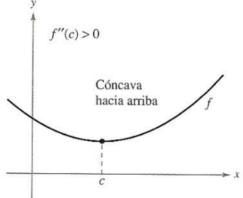
Empleando

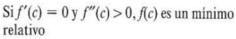
$$f''(x) = -60x^3 + 30x = 30(-2x^3 + x)$$

se puede aplicar el criterio de la segunda derivada como se indica a continuación.

Punto	(-1, -2)	(1, 2)	(0, 0)
Signo de $f''(x)$	f''(-1) > 0	f''(1) < 0	f''(0) = 0
Conclusión	Mínimo relativo	Máximo relativo	Falla de la prueba

Como el criterio de la segunda derivada no decide en (0,0), es posible utilizar el criterio de la primera derivada y observar que f aumenta hacia la izquierda y hacia la derecha de x = 0. De tal modo, (0,0) no es ni un mínimo relativo ni un máximo relativo (aun cuando la gráfica tiene una recta tangente horizontal en este punto). La gráfica de f se muestra en la figura 3.32.

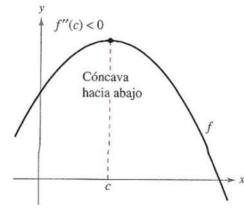






(0, 0) no es ni un mínimo relativo ni un náximo relativo

Figura 3.32

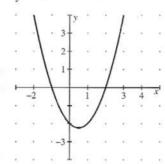


Si f'(c) = 0 y f''(c) < 0, f(c) es un máximo relativo

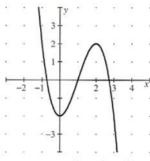
Figura 3.31

En los ejercicios 1 a 10, determinar los intervalos abiertos en los cuales la gráfica es cóncava hacia arriba o cóncava hacia abajo.

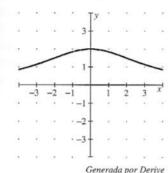
1.
$$y = x^2 - x - 2$$



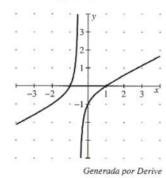
2.
$$y = -x^3 + 3x^2 - 2$$



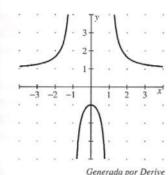
3.
$$f(x) = \frac{24}{x^2 + 12}$$
 4. $f(x) = \frac{x^2 - 1}{2x + 1}$



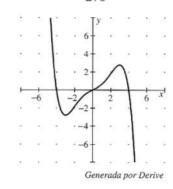
4.
$$f(x) = \frac{x^2 - 1}{2x + 1}$$



5. $f(x) = \frac{x^2 + 1}{x^2 - 1}$



6.
$$y = \frac{-3x^5 + 40x^3 + 135x}{270}$$



7.
$$g(x) = 3x^2 - x^3$$

7.
$$g(x) = 3x^2 - x^3$$
 8. $h(x) = x^5 - 5x + 2$

9.
$$y = 2x - \tan x$$
, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 10. $y = x + \frac{2}{\sin x}$, $(-\pi, \pi)$

10.
$$y = x + \frac{2}{\sin x}$$
, $(-\pi, \pi)$

En los ejercicios 11 a 26, encontrar los puntos de inflexión y anaizar la concavidad de la gráfica de la función.

11.
$$f(x) = x^3 - 6x^2 + 12x$$

12.
$$f(x) = 2x^3 - 3x^2 - 12x + 5$$

13.
$$f(x) = \frac{1}{4}x^4 - 2x^2$$

14.
$$f(x) = 2x^4 - 8x + 3$$

15.
$$f(x) = x(x-4)^3$$

16.
$$f(x) = x^3(x-4)$$

17.
$$f(x) = x\sqrt{x+3}$$

18.
$$f(x) = x\sqrt{x+1}$$

19.
$$f(x) = \frac{x}{x^2 + 1}$$

20.
$$f(x) = \frac{x+1}{\sqrt{x}}$$

En los ejercicios 27 a 40, encontrar todos los extremos relativos. Utilizar el criterio de la segunda derivada donde sea conveniente.

27.
$$f(x) = x^4 - 4x^3 + 2$$

28.
$$f(x) = x^2 + 3x - 8$$

29.
$$f(x) = (x - 5)^2$$

30.
$$f(x) = -(x-5)^2$$

31.
$$f(x) = x^3 - 3x^2 + 3$$

32.
$$f(x) = x^3 - 9x^2 + 27x$$

33.
$$g(x) = x^2(6-x)^3$$

34.
$$g(x) = -\frac{1}{8}(x+2)^2(x-4)^2$$

35.
$$f(x) = x^{2/3} - 3$$

36.
$$f(x) = \sqrt{x^2 + 1}$$

37.
$$f(x) = x + \frac{4}{x}$$
 38. $f(x) = \frac{x}{x-1}$

38.
$$f(x) = \frac{x}{x-1}$$

39.
$$f(x) = \cos x - x$$
, $[0, 4\pi]$

40.
$$f(x) = 2 \sin x + \cos 2x$$
, $[0, 2\pi]$

REFERENCIAS Y FUENTES DE INFORMACIÓN:

Cortesía:

 $\begin{array}{l} \textbf{C\'alculo: una variable Escrito por George Brinton Thomas} \\ \textbf{http://books.google.com.mx/books/id=AD1S446jumgC\&lpg=PA263\&dg=funciones%20crecientes%20y%20de$

 $Matemáticas\ para\ administración\ y\ econom\'ia\ Escrito\ por\ Ernest\ F.\ Haeussler, Richard\ S.\ Paul\\ \ \underline{http://books.google.com.mx/books?id=pj3cB8QGMgoC&lpg=PA533&dq=funciones%20crecientes%20y%20decrecientes%20y%20d$