Álgebra y Trigonometría Clase 3 – Funciones polinomiales y racionales

CNM-108

Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia

Copyleft ©2009. Reproducción permitida bajo los términos de la licencia de documentación libre GNU.

- 1 Funciones polinomiales
 - Funciones polinomiales de grado mayor que 2

- Propiedades de la división
 - Algoritmo de la división
 - Teoremas del residuo y del factor
 - División sintética

- 3 Ceros de polinomios
 - Teorema fundamental del álgebra
 - Número de ceros de un polinomio

Definición

Se dice que f es una función polinomial con coeficientes reales de grado n si

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \quad con \ a_n \neq 0.$$

Ejemplos:

1 $f(x) = a_0$ se conoce como la recta horizontal, observe que el grado de f es 0.

Definición

Se dice que f es una función polinomial con coeficientes reales de grado n si

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \quad con \ a_n \neq 0.$$

Ejemplos:

- **1** $f(x) = a_0$ se conoce como la recta horizontal, observe que el grado de f es 0.
- **3** $f(x) = a_1x + a_0$ corresponde a la recta con pendiente a_1 y el grado de f es 1.

Definición

Se dice que f es una función polinomial con coeficientes reales de grado n si

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \quad con \ a_n \neq 0.$$

Ejemplos:

- $f(x) = a_0$ se conoce como la recta horizontal, observe que el grado de f es 0.
- **9** $f(x) = a_1x + a_0$ corresponde a la recta con pendiente a_1 y el grado de f es 1.
- **3** $f(x) = a_1x^2 + a_1x + a_0$ es una parábola con eje vertical, el grado de f es 2.

Definición

Se dice que f es una función polinomial con coeficientes reales de grado n si

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \quad con \ a_n \neq 0.$$

Ejemplos:

- $f(x) = a_0$ se conoce como la recta horizontal, observe que el grado de f es 0.
- **3** $f(x) = a_1x + a_0$ corresponde a la recta con pendiente a_1 y el grado de f es 1.
- **3** $f(x) = a_1x^2 + a_1x + a_0$ es una parábola con eje vertical, el grado de f es 2.

Observación:

Todas las funciones polinomiales son funciones continuas (no tienen cortes ni interrupciones).

Definición

Se dice que f es una función polinomial con coeficientes reales de grado n si

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \quad con \ a_n \neq 0.$$

Ejemplos:

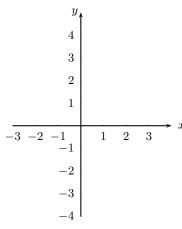
- $f(x) = a_0$ se conoce como la recta horizontal, observe que el grado de f es 0.
- **3** $f(x) = a_1x + a_0$ corresponde a la recta con pendiente a_1 y el grado de f es 1.
- **3** $f(x) = a_1x^2 + a_1x + a_0$ es una parábola con eje vertical, el grado de f es 2.

Observación:

Todas las funciones polinomiales son funciones continuas (no tienen cortes ni interrupciones).

Si n es un entero positivo impar:

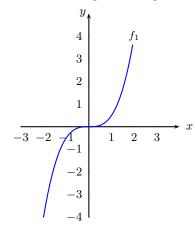
Si n es un entero positivo par:



 $f_1(x) = \frac{1}{2}x^3$, $f_2(x) = -\frac{1}{2}x^3$ $f_3(x) = 2x^3$, $f_4(x) = -2x^3$

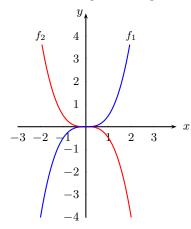
Si n es un entero positivo impar:

Si n es un entero positivo par:



Si n es un entero positivo impar:

Si n es un entero positivo par:

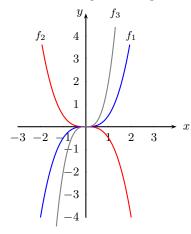


 $f_1(x) = \frac{1}{2}x^3$, $f_2(x) = -\frac{1}{2}x^3$ $f_3(x) = 2x^3$, $f_4(x) = -2x^3$

Caso particular: $f(x) = ax^n$ para alguna $a = a_n \neq 0$.

Si n es un entero positivo impar:

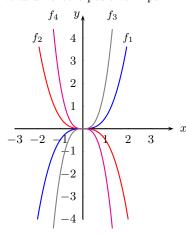
Si n es un entero positivo par:



$$f_1(x) = \frac{1}{2}x^3$$
, $f_2(x) = -\frac{1}{2}x^3$
 $f_3(x) = 2x^3$, $f_4(x) = -2x^3$

Si n es un entero positivo impar:

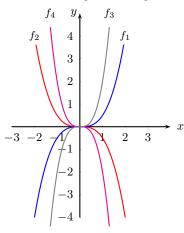
Si n es un entero positivo par:



 $f_1(x) = \frac{1}{2}x^3$, $f_2(x) = -\frac{1}{2}x^3$ $f_3(x) = 2x^3$, $f_4(x) = -2x^3$

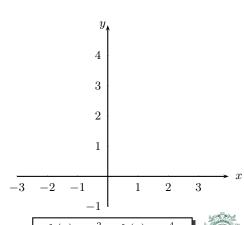
Caso particular: $f(x) = ax^n$ para alguna $a = a_n \neq 0$.

Si n es un entero positivo impar:



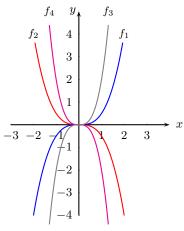
$$f_1(x) = \frac{1}{2}x^3$$
, $f_2(x) = -\frac{1}{2}x^3$
 $f_3(x) = 2x^3$, $f_4(x) = -2x^3$

Si n es un entero positivo par:



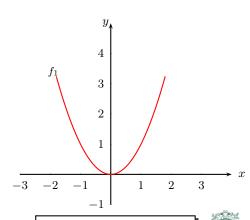
$$f_1(x) = x^2$$
, $f_2(x) = x^4$
 $f_3(x) = x^8$, $f_4(x) = x^{16}$

Si n es un entero positivo impar:



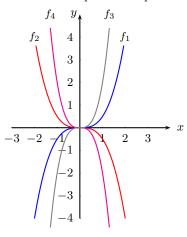
$$f_1(x) = \frac{1}{2}x^3$$
, $f_2(x) = -\frac{1}{2}x^3$
 $f_3(x) = 2x^3$, $f_4(x) = -2x^3$

Si n es un entero positivo par:



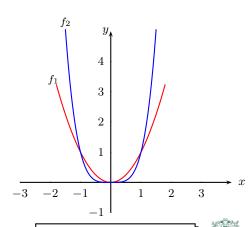
$$f_1(x) = x^2$$
, $f_2(x) = x^4$
 $f_3(x) = x^8$, $f_4(x) = x^{16}$

Si n es un entero positivo impar:



$$f_1(x) = \frac{1}{2}x^3$$
, $f_2(x) = -\frac{1}{2}x^3$
 $f_3(x) = 2x^3$, $f_4(x) = -2x^3$

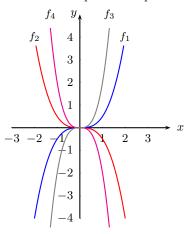
Si n es un entero positivo par:



$$f_1(x) = x^2$$
, $f_2(x) = x^4$
 $f_3(x) = x^8$, $f_4(x) = x^{16}$

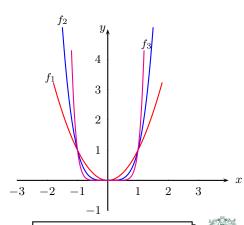
UNIVERSIDAL DE ANTIOQUI

Si n es un entero positivo impar:



$$f_1(x) = \frac{1}{2}x^3$$
, $f_2(x) = -\frac{1}{2}x^3$
 $f_3(x) = 2x^3$, $f_4(x) = -2x^3$

Si n es un entero positivo par:

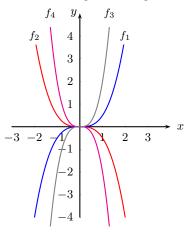


$$f_1(x) = x^2, \quad f_2(x) = x^4$$

 $f_3(x) = x^8, \quad f_4(x) = x^{16}$

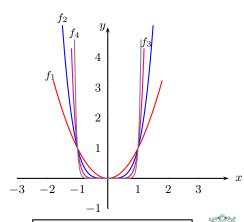
Caso particular: $f(x) = ax^n$ para alguna $a = a_n \neq 0$.

Si n es un entero positivo impar:



$$f_1(x) = \frac{1}{2}x^3$$
, $f_2(x) = -\frac{1}{2}x^3$
 $f_3(x) = 2x^3$, $f_4(x) = -2x^3$

Si n es un entero positivo par:



$$f_1(x) = x^2, \quad f_2(x) = x^4$$

 $f_3(x) = x^8, \quad f_4(x) = x^{16}$

Ejemplo:

Sea $f(x) = x^3 - x^2 - 12x$, encontrar los valores de x donde f(x) > 0 y f(x) < 0, además trazar la gráfica de f.

Solución:

$$f(x) = x^{3} - x^{2} - 12x$$
$$= x(x^{2} - x - 12)$$
$$= x(x+3)(x-4),$$

Ejemplo:

Sea $f(x) = x^3 - x^2 - 12x$, encontrar los valores de x donde f(x) > 0 y f(x) < 0, además trazar la gráfica de f.

Solución:

$$f(x) = x^{3} - x^{2} - 12x$$
$$= x(x^{2} - x - 12)$$
$$= x(x+3)(x-4),$$

f(x) intervalo	(-∞,-3)	(-3,0)	(0,4)	$(4,\infty)$
x	_		+	+
(x + 3)	_	+	+	+
(x-4)	_			+
Signo $f(x)$	_	+		+

Ejemplo:

Sea $f(x) = x^3 - x^2 - 12x$, encontrar los valores de x donde f(x) > 0 y f(x) < 0, además trazar la gráfica de f.

Solución:

$$f(x) = x^{3} - x^{2} - 12x$$
$$= x(x^{2} - x - 12)$$
$$= x(x+3)(x-4),$$

f(x) intervalo	$(-\infty, -3)$	(-3,0)	(0,4)	$(4,\infty)$
x	-	_	+	+
(x + 3)	_	+	+	+
(x - 4)	_	_	_	+
Signo $f(x)$	_	+	_	+

Ejemplo:

Sea $f(x) = x^3 - x^2 - 12x$, encontrar los valores de x donde f(x) > 0 y f(x) < 0, además trazar la gráfica de f.

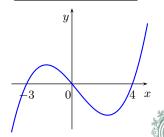
Solución:

$$f(x) = x^3 - x^2 - 12x$$

= $x(x^2 - x - 12)$
= $x(x+3)(x-4)$,

f(x) intervalo	$(-\infty, -3)$	(-3,0)	(0,4)	$(4,\infty)$
x	-	_	+	+
(x + 3)	_	+	+	+
(x - 4)	_	_	_	+
Signo $f(x)$	_	+	_	+

$$y = x^3 - x^2 - 12x$$



Sean f(x) y g(x) polinomios en x. Decimos que g(x) es un factor de f(x), si f(x) es divisible por g(x):

 $\mathbf{Q} \mathbf{x^4 - 81}$ es divisible entre $x^2 + 9$, entre $x^2 - 9$, entre x + 3 y entre x - 3.

Sean f(x) y g(x) polinomios en x. Decimos que g(x) es un factor de f(x), si f(x) es divisible por g(x):

- **3** $x^4 81$ es divisible entre $x^2 + 9$, entre $x^2 9$, entre x + 3 y entre x 3.
- $\mathbf{2} \mathbf{x}^6 + \mathbf{27}$ es divisible entre $x^2 + 3$ y entre $x^4 3x^2 + 9$.

Sean f(x) y g(x) polinomios en x. Decimos que g(x) es un factor de f(x), si f(x) es divisible por g(x):

- **Q** $x^4 81$ es divisible entre $x^2 + 9$, entre $x^2 9$, entre x + 3 y entre x 3.
- **2** $x^6 + 27$ es divisible entre $x^2 + 3$ y entre $x^4 3x^2 + 9$.
- $3 7x^2 + 3x 10$ es divisible entre 7x + 10 y entre x 1

${ m Teorem}$

Si f(x) y p(x) son polinomios y si $p(x) \neq 0$, entonces existen polinomios únicos q(x) y r(x) tales que

$$f(x) = p(x)q(x) + r(x)$$

donde r(x) = 0 o el grado de r(x) es menor que el grado de p(x). El polinomio q(x) se conoce como el **cociente** y el polinomio r(x) se conoce como el **residuo** en la división de f(x) entre p(x).

Sean f(x) y g(x) polinomios en x. Decimos que g(x) es un factor de f(x), si f(x) es divisible por g(x):

- **Q** $x^4 81$ es divisible entre $x^2 + 9$, entre $x^2 9$, entre x + 3 y entre x 3.
- **2** $x^6 + 27$ es divisible entre $x^2 + 3$ y entre $x^4 3x^2 + 9$.
- $3 7x^2 + 3x 10$ es divisible entre 7x + 10 y entre x 1

Teorema

Si f(x) y p(x) son polinomios y si $p(x) \neq 0$, entonces existen polinomios únicos q(x) y r(x) tales que

$$f(x) = p(x)q(x) + r(x)$$

donde r(x) = 0 o el grado de r(x) es menor que el grado de p(x). El polinomio q(x) se conoce como el **cociente** y el polinomio r(x) se conoce como el **residuo** en la división de f(x) entre p(x).

Sean f(x) y g(x) polinomios en x. Decimos que g(x) es un factor de f(x), si f(x) es divisible por g(x):

- **Q** $x^4 81$ es divisible entre $x^2 + 9$, entre $x^2 9$, entre x + 3 y entre x 3.
- **2** $x^6 + 27$ es divisible entre $x^2 + 3$ y entre $x^4 3x^2 + 9$.
- $3 7x^2 + 3x 10$ es divisible entre 7x + 10 y entre x 1

Teorema

Si f(x) y p(x) son polinomios y si $p(x) \neq 0$, entonces existen polinomios únicos q(x) y r(x) tales que

$$f(x) = p(x)q(x) + r(x)$$

donde r(x) = 0 o el grado de r(x) es menor que el grado de p(x). El polinomio q(x) se conoce como el **cociente** y el polinomio r(x) se conoce como el **residuo** en la división de f(x) entre p(x).

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

$$3x^4 + 2x^3 - 2x^2 - x - 6 \mid x^2 + 1$$

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

$$3x^4 +2x^3 -2x^2 -x -6 \mid x^2 + 1$$

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

Solución:

Por tanto, tenemos que

$$3x^4 + 2x^3 - x^2 - x - 6 =$$

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

Solución:

Por tanto, tenemos que

$$3x^4 + 2x^3 - x^2 - x - 6 = (3x^2 + 2x - 4)$$

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

Solución:

Por tanto, tenemos que

$$3x^4 + 2x^3 - x^2 - x - 6 = (3x^2 + 2x - 4)(x^2 + 1)$$

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

Solución:

Por tanto, tenemos que

$$3x^4 + 2x^3 - x^2 - x - 6 = (3x^2 + 2x - 4)(x^2 + 1) - 3x - 2$$

o también

$$\frac{3x^4 + 2x^3 - x^2 - x - 6}{x^2 + 1} =$$

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

Solución:

Por tanto, tenemos que

$$3x^4 + 2x^3 - x^2 - x - 6 = (3x^2 + 2x - 4)(x^2 + 1) - 3x - 2$$

o también

$$\frac{3x^4 + 2x^3 - x^2 - x - 6}{x^2 + 1} = (3x^2 + 2x - 4) - \frac{3x + 2}{x^2 + 1}.$$

Ejemplo: Divida $3x^4 + 2x^3 - x^2 - x - 6$ entre $x^2 + 1$.

Solución:

Por tanto, tenemos que

$$3x^4 + 2x^3 - x^2 - x - 6 = (3x^2 + 2x - 4)(x^2 + 1) - 3x - 2$$

o también

$$\frac{3x^4 + 2x^3 - x^2 - x - 6}{x^2 + 1} = (3x^2 + 2x - 4) - \frac{3x + 2}{x^2 + 1}.$$

Si un polinomio f(x) se divide entre x-c, entonces el residuo es f(c).

Ejemplo:

Calcular el residuo que se obtiene al dividir el polinomio

$$f(x) = x^4 + 5x^3 + 5x^2 - 4x - 7$$
 entre $x + 3$.

Teorema (Teorema del residuo)

Si un polinomio f(x) se divide entre x-c, entonces el residuo es f(c).

Ejemplo:

Calcular el residuo que se obtiene al dividir el polinomio $f(x) = x^4 + 5x^3 + 5x^2 - 4x - 7$ entre x + 3.

Si un polinomio f(x) se divide entre x-c, entonces el residuo es f(c).

Ejemplo:

Calcular el residuo que se obtiene al dividir el polinomio $f(x) = x^4 + 5x^3 + 5x^2 - 4x - 7$ entre x + 3.

Solución:

 $f(-3) = (-3)^4 + 5(-3)^3 + 5(-3)^2 - 4(-3) - 7 = 81 - 135 + 45 + 12 - 7 = -4$. Se puede comprobar fácilmente el resultado efectuando la división ejercicio!

Si un polinomio f(x) se divide entre x-c, entonces el residuo es f(c).

Ejemplo:

Calcular el residuo que se obtiene al dividir el polinomio $f(x) = x^4 + 5x^3 + 5x^2 - 4x - 7$ entre x + 3.

Solución:

 $f(-3) = (-3)^4 + 5(-3)^3 + 5(-3)^2 - 4(-3) - 7 = 81 - 135 + 45 + 12 - 7 = -4$. Se puede comprobar fácilmente el resultado efectuando la división ejercicio!

Si un polinomio f(x) se divide entre x-c, entonces el residuo es f(c).

Ejemplo:

Calcular el residuo que se obtiene al dividir el polinomio $f(x) = x^4 + 5x^3 + 5x^2 - 4x - 7$ entre x + 3.

Solución:

$$f(-3) = (-3)^4 + 5(-3)^3 + 5(-3)^2 - 4(-3) - 7 = 81 - 135 + 45 + 12 - 7 = -4$$
. Se puede comprobar fácilmente el resultado efectuando la división ejercicio!

Teorema (Teorema del factor)

Un polinomio f(x) tiene un factor x - c si y sólo si f(c) = 0

Teorema (Teorema del residuo)

Si un polinomio f(x) se divide entre x-c, entonces el residuo es f(c).

Ejemplo:

Calcular el residuo que se obtiene al dividir el polinomio $f(x) = x^4 + 5x^3 + 5x^2 - 4x - 7$ entre x + 3.

Solución:

 $f(-3) = (-3)^4 + 5(-3)^3 + 5(-3)^2 - 4(-3) - 7 = 81 - 135 + 45 + 12 - 7 = -4$. Se puede comprobar fácilmente el resultado efectuando la división ejercicio!

Teorema (Teorema del factor)

Un polinomio f(x) tiene un factor x - c si y sólo si f(c) = 0.

Ejemplo:

Por medio del teorema del factor, demostrar que x-5 es un factor d $f(x)=x^3-8x^2+19x-20$.

Teorema (Teorema del residuo)

Si un polinomio f(x) se divide entre x-c, entonces el residuo es f(c).

Ejemplo:

Calcular el residuo que se obtiene al dividir el polinomio $f(x) = x^4 + 5x^3 + 5x^2 - 4x - 7$ entre x + 3.

Solución:

 $f(-3) = (-3)^4 + 5(-3)^3 + 5(-3)^2 - 4(-3) - 7 = 81 - 135 + 45 + 12 - 7 = -4$. Se puede comprobar fácilmente el resultado efectuando la división ejercicio!

Teorema (Teorema del factor)

Un polinomio f(x) tiene un factor x - c si y sólo si f(c) = 0.

Ejemplo:

Por medio del teorema del factor, demostrar que x-5 es un factor de $f(x)=x^3-8x^2+19x-20$.

Teorema (Teorema del residuo)

Si un polinomio f(x) se divide entre x-c, entonces el residuo es f(c).

Ejemplo:

Calcular el residuo que se obtiene al dividir el polinomio $f(x) = x^4 + 5x^3 + 5x^2 - 4x - 7$ entre x + 3.

Solución:

 $f(-3) = (-3)^4 + 5(-3)^3 + 5(-3)^2 - 4(-3) - 7 = 81 - 135 + 45 + 12 - 7 = -4$. Se puede comprobar fácilmente el resultado efectuando la división ejercicio!

Teorema (Teorema del factor)

Un polinomio f(x) tiene un factor x - c si y sólo si f(c) = 0.

Ejemplo:

Por medio del teorema del factor, demostrar que x-5 es un factor de $f(x)=x^3-8x^2+19x-20$.

Solución: $f(5) = 5^3 - 8(5)^2 + 19(5) - 20 = 125 - 200 + 95 - 20 = 0$.

Si un polinomio f(x) se divide entre x-c, entonces el residuo es f(c).

Ejemplo:

Calcular el residuo que se obtiene al dividir el polinomio $f(x) = x^4 + 5x^3 + 5x^2 - 4x - 7$ entre x + 3.

Solución:

$$f(-3) = (-3)^4 + 5(-3)^3 + 5(-3)^2 - 4(-3) - 7 = 81 - 135 + 45 + 12 - 7 = -4$$
. Se puede comprobar fácilmente el resultado efectuando la división ejercicio!

Teorema (Teorema del factor)

Un polinomio f(x) tiene un factor x - c si y sólo si f(c) = 0.

Ejemplo:

Por medio del teorema del factor, demostrar que x-5 es un factor de $f(x)=x^3-8x^2+19x-20$.

Solución: $f(5) = 5^3 - 8(5)^2 + 19(5) - 20 = 125 - 200 + 95 - 20 = 0$.

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

$$x^3 + 3x^2 - 4x - 12 =$$

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

$$x^3 + 3x^2 - 4x - 12 = (2x^2 + 7x + 10)$$

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

$$x^{3} + 3x^{2} - 4x - 12 = (2x^{2} + 7x + 10)(x - 2) +$$

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

$$x^{3} + 3x^{2} - 4x - 12 = (2x^{2} + 7x + 10)(x - 2) + 8$$

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

Solución:

$$x^{3} + 3x^{2} - 4x - 12 = (2x^{2} + 7x + 10)(x - 2) + 8$$

Ejemplo: Sea $p(x) = x^4 - 3x^2 + 2x - 1$. Utilice división sintética para hallar f(2).

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

Solución:

$$x^{3} + 3x^{2} - 4x - 12 = (2x^{2} + 7x + 10)(x - 2) + 8$$

Ejemplo: Sea $p(x) = x^4 - 3x^2 + 2x - 1$. Utilice división sintética para hallar f(2).

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

Solución:

$$x^{3} + 3x^{2} - 4x - 12 = (2x^{2} + 7x + 10)(x - 2) + 8$$

Ejemplo: Sea $p(x) = x^4 - 3x^2 + 2x - 1$. Utilice división sintética para hallar f(2).

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

Solución:

$$x^{3} + 3x^{2} - 4x - 12 = (2x^{2} + 7x + 10)(x - 2) + 8$$

Ejemplo: Sea $p(x) = x^4 - 3x^2 + 2x - 1$. Utilice división sintética para hallar f(2).

Ejemplo: Halle el residuo de dividir $2x^3 + 3x^2 - 4x - 12$ entre x - 2.

Solución:

$$x^{3} + 3x^{2} - 4x - 12 = (2x^{2} + 7x + 10)(x - 2) + 8$$

Ejemplo: Sea $p(x) = x^4 - 3x^2 + 2x - 1$. Utilice división sintética para hallar f(2).

Solución:

Teorema del residuo \implies f(2) = 7

Teorema fundamental del álgebra

Teorema (Teorema fundamental del álgebra)

Todo polinomio f(x) de grado positivo con coeficientes complejos posee al menos un cero complejo.

Polinomio $f(x)$	Forma factorizada	Ceros de $f(x)$
$5x^3 - 30x^2 + 65x$	5x(x - (3+2i))(x - (3-2i))	$0, \ 3 \pm 2i$
$-6x^3 - 2x^2 - 6x - 2$	$-6\left(x+\frac{1}{3}\right)(x+i)(x-i)$	$-\frac{1}{3}$, $\pm i$

Teorema fundamental del álgebra

Teorema (Teorema fundamental del álgebra)

Todo polinomio f(x) de grado positivo con coeficientes complejos posee al menos un cero complejo.

Polinomio $f(x)$	Forma factorizada	Ceros de $f(x)$
$5x^3 - 30x^2 + 65x$	5x(x-(3+2i))(x-(3-2i))	$0, \ 3 \pm 2i$
$-6x^3 - 2x^2 - 6x - 2$	$-6\left(x+\frac{1}{3}\right)(x+i)(x-i)$	$-\frac{1}{3}$, $\pm i$

Teorema (Teorema de factorización completa para polinomios)

Si f(x) es un polinomio de grado n > 0, entonces existen n números complejos z_1, z_2, \ldots, z_n tales que $f(x) = a(x - z_1)(x - z_2) \ldots (x - z_n)$, donde a es el coeficiente principal de f(x). Notemos que cada número z_k en un cero de f(x).

Teorema fundamental del álgebra

Teorema (Teorema fundamental del álgebra)

Todo polinomio f(x) de grado positivo con coeficientes complejos posee al menos un cero complejo.

Polinomio $f(x)$	Forma factorizada	Ceros de $f(x)$
$5x^3 - 30x^2 + 65x$	5x(x-(3+2i))(x-(3-2i))	$0, \ 3 \pm 2i$
$-6x^3 - 2x^2 - 6x - 2$	$-6\left(x+\frac{1}{3}\right)(x+i)(x-i)$	$-\frac{1}{3}$, $\pm i$

Teorema (Teorema de factorización completa para polinomios)

Si f(x) es un polinomio de grado n > 0, entonces existen n números complejos z_1, z_2, \ldots, z_n tales que $f(x) = a(x - z_1)(x - z_2) \ldots (x - z_n)$, donde a es el coeficiente principal de f(x). Notemos que cada número z_k es un cero de f(x).

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x)=0.

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x$$

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x)=0.

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x =$$

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x) = 0.

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x = x(x-1)^2(x-4)^3$$

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x)=0.

Ejemplo:

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x = x(x-1)^2(x-4)^3$$

Ceros: 0 es cero de multiplicidad 1, 1 es un cero de multiplicidad 2 y 4 es un cero de multiplicidad 3.

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x)=0.

Ejemplo:

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x = x(x-1)^2(x-4)^3$$

Ceros: 0 es cero de multiplicidad 1, 1 es un cero de multiplicidad 2 y 4 es un cero de multiplicidad 3.

Teorema (Número exacto de ceros de un polinomio)

Si f(x) es un polinomio de grado n > 0 y si un cero de multiplicidad m se cuenta m veces, entonces f(x) tiene precisamente n ceros.

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x)=0.

Ejemplo:

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x = x(x-1)^2(x-4)^3$$

Ceros: 0 es cero de multiplicidad 1, 1 es un cero de multiplicidad 2 y 4 es un cero de multiplicidad 3.

Teorema (Número exacto de ceros de un polinomio)

Si f(x) es un polinomio de grado n > 0 y si un cero de multiplicidad m se cuenta m veces, entonces f(x) tiene precisamente n ceros.

$$f(x) = x^5 - x^4 - 2x^3 =$$

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x)=0.

Ejemplo:

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x = x(x-1)^2(x-4)^3$$

Ceros: 0 es cero de multiplicidad 1, 1 es un cero de multiplicidad 2 y 4 es un cero de multiplicidad 3.

Teorema (Número exacto de ceros de un polinomio)

Si f(x) es un polinomio de grado n > 0 y si un cero de multiplicidad m se cuenta m veces, entonces f(x) tiene precisamente n ceros.

$$f(x) = x^5 - x^4 - 2x^3 = x^3(x^2 - x - 2)$$

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x)=0.

Ejemplo:

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x = x(x-1)^2(x-4)^3$$

Ceros: 0 es cero de multiplicidad 1, 1 es un cero de multiplicidad 2 y 4 es un cero de multiplicidad 3.

Teorema (Número exacto de ceros de un polinomio)

Si f(x) es un polinomio de grado n > 0 y si un cero de multiplicidad m se cuenta m veces, entonces f(x) tiene precisamente n ceros.

$$f(x) = x^5 - x^4 - 2x^3 = x^3(x^2 - x - 2) =$$

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x)=0.

Ejemplo:

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x = x(x-1)^2(x-4)^3$$

Ceros: 0 es cero de multiplicidad 1, 1 es un cero de multiplicidad 2 y 4 es un cero de multiplicidad 3.

Teorema (Número exacto de ceros de un polinomio)

Si f(x) es un polinomio de grado n > 0 y si un cero de multiplicidad m se cuenta m veces, entonces f(x) tiene precisamente n ceros.

Ejemplo:

$$f(x) = x^5 - x^4 - 2x^3 = x^3(x^2 - x - 2) = x^3(x+1)(x-2)$$

UNIVERSIDAD DE ANTIOQUIA

Ceros: 0, 0, 0, -1, 2.

Definición

Si un factor, digamos x-c, se presenta m veces en la factorización del polinomio f(x), entonces decimos que c es un cero de multiplicidad m de la ecuación f(x) = 0.

Ejemplo:

$$f(x) = x^6 - 14x^5 + 73x^4 - 172x^3 + 176x^2 - 64x = x(x-1)^2(x-4)^3$$

Ceros: 0 es cero de multiplicidad 1, 1 es un cero de multiplicidad 2 y 4 es un cero de multiplicidad 3.

Teorema (Número exacto de ceros de un polinomio)

Si f(x) es un polinomio de grado n > 0 y si un cero de multiplicidad m se cuenta m veces, entonces f(x) tiene precisamente n ceros.

Ejemplo:

$$f(x) = x^5 - x^4 - 2x^3 = x^3(x^2 - x - 2) = x^3(x+1)(x-2)$$

Ceros: 0, 0, 0, -1, 2.

Ceros conjugados

Teorema (Ceros irracionales conjugados)

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son enteros y si $c_1 = s + t\sqrt{u}$ es un cero irracional de p(x) (u no es cuadrado perfecto), entonces $c_2 = s - t\sqrt{u}$ también es un cero de p(x).

$$x^2 - 2x - 1 =$$

Teorema (Ceros irracionales conjugados)

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son enteros y si $c_1 = s + t\sqrt{u}$ es un cero irracional de p(x) (u no es cuadrado perfecto), entonces $c_2 = s - t\sqrt{u}$ también es un cero de p(x).

$$x^2 - 2x - 1 =$$

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son enteros y si $c_1 = s + t\sqrt{u}$ es un cero irracional de p(x) (u no es cuadrado perfecto), entonces $c_2 = s - t\sqrt{u}$ también es un cero de p(x).

Ejemplo:

$$x^{2} - 2x - 1 = (x - (1 + \sqrt{2})) (x - (1 - \sqrt{2}))$$

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son enteros y si $c_1 = s + t\sqrt{u}$ es un cero irracional de p(x) (u no es cuadrado perfecto), entonces $c_2 = s - t\sqrt{u}$ también es un cero de p(x).

Ejemplo:

$$x^{2} - 2x - 1 = \left(x - \left(1 + \sqrt{2}\right)\right)\left(x - \left(1 - \sqrt{2}\right)\right)$$

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son enteros y si $c_1 = s + t\sqrt{u}$ es un cero irracional de p(x) (u no es cuadrado perfecto), entonces $c_2 = s - t\sqrt{u}$ también es un cero de p(x).

Ejemplo:

$$x^{2} - 2x - 1 = \left(x - \left(1 + \sqrt{2}\right)\right)\left(x - \left(1 - \sqrt{2}\right)\right)$$

Teorema (Suma y producto de ceros

La suma y el producto de los ceros del polinomio

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \neq 0$$

vienen dados en términos de sus coeficientes por medio de

Suma de ceros =
$$-\frac{a_{n-1}}{a_n}$$
 y Producto de ceros = $(-1)^n \frac{a_0}{a_n}$

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son enteros y si $c_1 = s + t\sqrt{u}$ es un cero irracional de p(x) (u no es cuadrado perfecto), entonces $c_2 = s - t\sqrt{u}$ también es un cero de p(x).

Ejemplo:

$$x^{2} - 2x - 1 = \left(x - \left(1 + \sqrt{2}\right)\right)\left(x - \left(1 - \sqrt{2}\right)\right)$$

Teorema (Suma y producto de ceros)

La suma y el producto de los ceros del polinomio

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \neq 0$$

vienen dados en términos de sus coeficientes por medio de

Suma de ceros =
$$-\frac{a_{n-1}}{a_n}$$
 y Producto de ceros = $(-1)^n \frac{a_0}{a_n}$

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son reales y si z = a + bi es un cero cero complejo de p(x), entonces $\bar{z} = a - bi$ también es un cero de p(x).

Ejemplo: encuentre un polinomio de grado cuatro que tenga coeficientes reales y ceros -3+2i, 1-4i.

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son reales y si z = a + bi es un cero cero complejo de p(x), entonces $\bar{z} = a - bi$ también es un cero de p(x).

Ejemplo: encuentre un polinomio de grado cuatro que tenga coeficientes reales y ceros -3+2i, 1-4i.

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son reales y si z = a + bi es un cero cero complejo de p(x), entonces $\bar{z} = a - bi$ también es un cero de p(x).

Ejemplo: encuentre un polinomio de grado cuatro que tenga coeficientes reales y ceros -3 + 2i, 1 - 4i.

Ceros:
$$-3 + 2i$$
, $-3 - 2i$, $1 - 4i$ y $1 + 4i$

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son reales y si z = a + bi es un cero cero complejo de p(x), entonces $\bar{z} = a - bi$ también es un cero de p(x).

Ejemplo: encuentre un polinomio de grado cuatro que tenga coeficientes reales y ceros -3 + 2i, 1 - 4i.

Ceros:
$$-3 + 2i$$
, $-3 - 2i$, $1 - 4i$ y $1 + 4i$

Factores:
$$x - (-3 + 2i)$$
, $x - (-3 - 2i)$, $x - (1 - 4i)$ y $x - (1 + 4i)$

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son reales y si z = a + bi es un cero cero complejo de p(x), entonces $\bar{z} = a - bi$ también es un cero de p(x).

Ejemplo: encuentre un polinomio de grado cuatro que tenga coeficientes reales y ceros -3 + 2i, 1 - 4i.

Solución:

Ceros: -3 + 2i, -3 - 2i, 1 - 4i y 1 + 4i

Factores: x - (-3 + 2i), x - (-3 - 2i), x - (1 - 4i) y x - (1 + 4i),

$$f(x) = [x - (-3 + 2i)][x - (-3 - 2i)][x - (1 - 4i)][x - (1 + 4i)]$$

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son reales y si z = a + bi es un cero cero complejo de p(x), entonces $\bar{z} = a - bi$ también es un cero de p(x).

Ejemplo: encuentre un polinomio de grado cuatro que tenga coeficientes reales y ceros -3 + 2i, 1 - 4i.

Solución:

Ceros: -3 + 2i, -3 - 2i, 1 - 4i y 1 + 4i

Factores:
$$x - (-3 + 2i)$$
, $x - (-3 - 2i)$, $x - (1 - 4i)$ y $x - (1 + 4i)$,

$$f(x) = [x - (-3 + 2i)][x - (-3 - 2i)][x - (1 - 4i)][x - (1 + 4i)]$$

= $[x^2 + 6x + 13][x^2 - 2x + 16]$
= $x^4 + 4x^3 + 17x^2 + 70x + 208$

Si los coeficientes de

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

son reales y si z = a + bi es un cero cero complejo de p(x), entonces $\bar{z} = a - bi$ también es un cero de p(x).

Ejemplo: encuentre un polinomio de grado cuatro que tenga coeficientes reales y ceros -3 + 2i, 1 - 4i.

Solución:

Ceros: -3 + 2i, -3 - 2i, 1 - 4i y 1 + 4i

Factores:
$$x - (-3 + 2i)$$
, $x - (-3 - 2i)$, $x - (1 - 4i)$ y $x - (1 + 4i)$,

$$f(x) = [x - (-3 + 2i)][x - (-3 - 2i)][x - (1 - 4i)][x - (1 + 4i)]$$

= $[x^2 + 6x + 13][x^2 - 2x + 16]$
= $x^4 + 4x^3 + 17x^2 + 70x + 208$

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- ullet el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Solución:

Posibles ceros racionales

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- ullet el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Solución:

Posibles ceros racionales =

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- ullet el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Posibles ceros racionales =
$$\frac{\text{factores de 2}}{\text{factores de 1}}$$

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- ullet el numerador c del cero es un factor del término constante $a_0.$
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Posibles ceros racionales
$$=$$
 $\frac{\text{factores de 2}}{\text{factores de 1}}$ $=$

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- ullet el numerador c del cero es un factor del término constante $a_0.$
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Posibles ceros racionales
$$=$$
 $\frac{\text{factores de 2}}{\text{factores de 1}} = \frac{\pm 1}{\pm 1}$,

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- ullet el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Posibles ceros racionales =
$$\frac{\text{factores de 2}}{\text{factores de 1}} = \frac{\pm 1}{\pm 1}, \frac{\pm 2}{\pm 1}$$

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Posibles ceros racionales =
$$\frac{\text{factores de 2}}{\text{factores de 1}} = \frac{\pm 1}{\pm 1}, \frac{\pm 2}{\pm 1}$$

$$f(-1) = 3,$$

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Posibles ceros racionales =
$$\frac{\text{factores de 2}}{\text{factores de 1}} = \frac{\pm 1}{\pm 1}, \frac{\pm 2}{\pm 1}$$

$$f(-1) = 3$$
, $f(1) = 1$,

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Posibles ceros racionales =
$$\frac{\text{factores de 2}}{\text{factores de 1}} = \frac{\pm 1}{\pm 1}, \frac{\pm 2}{\pm 1}$$

$$f(-1) = 3$$
, $f(1) = 1$, $f(-2) = 4$,

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- ullet el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Posibles ceros racionales =
$$\frac{\text{factores de 2}}{\text{factores de 1}} = \frac{\pm 1}{\pm 1}, \frac{\pm 2}{\pm 1}$$

$$f(-1) = 3$$
, $f(1) = 1$, $f(-2) = 4$, $f(2) = 24$

Teorema

Si el polinomio $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ tiene coeficientes enteros y c/d es un cero racional de f(x) tal que c y d no posean un factor primo común, entonces

- el numerador c del cero es un factor del término constante a_0 .
- el denominador d del cero es un factor del término constante a_n .

Ejemplo: Muestre que el polinomio

$$f(x) = x^5 - 3x^3 + 4x^2 + x - 2$$

no tiene ceros racionales.

Posibles ceros racionales =
$$\frac{\text{factores de 2}}{\text{factores de 1}} = \frac{\pm 1}{\pm 1}, \frac{\pm 2}{\pm 1}$$

$$f(-1) = 3$$
, $f(1) = 1$, $f(-2) = 4$, $f(2) = 24$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

$$f(x) = x(x-2)(x^4 + 5x^3 - 3x^2 - 31x - 12)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

$$f(x) = x(x-2)(x^4 + 5x^3 - 3x^2 - 31x - 12)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

$$f(x) = x(x-2)(x^4 + 5x^3 - 3x^2 - 31x - 12)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

$$f(x) = x(x-2)(x^4 + 5x^3 - 3x^2 - 31x - 12)$$

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$
 $f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$
 $f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$
 $f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$
 $f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$

$$f(x) = x(x-2)(x+3)(x+3)(x^2-2x-1)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$
 $f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$

$$f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$$

$$x^2 - 2x - 1 = 0$$

$$f(x) = x(x-2)(x+3)(x+3)(x^2-2x-1)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

Posibles ceros racionales: ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , ± 24

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$
 $f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$

$$f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$$

$$x = \frac{-(-2) \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2}$$

 $x^2 - 2x - 1 = 0$

$$f(x) = x(x-2)(x+3)(x+3)(x^2-2x-1)$$

Ejemplo: Halle todas las soluciones racionales de la ecuación

$$f(x) = x^6 + 3x^5 - 13x^4 - 25x^3 + 50x^2 + 24x = 0$$

Solución:

$$f(x) = x(x^5 + 3x^4 - 13x^3 - 25x^2 + 50x + 24)$$

Posibles ceros racionales: ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , ± 24

$$f(x) = x(x-2)(x^4+5x^3-3x^2-31x-12)$$
 $f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$

$$f(x) = x(x-2)(x+3)(x^3+2x^2-9x-4)$$

$$x = \frac{-(-2) \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2}$$

 $x^2 - 2x - 1 = 0$

 $f(x) = x(x-2)(x+3)(x+3)(x^2-2x-1)$